Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling

نویسندگان

  • Seung-Ryoung Jung
  • Jong Bae Seo
  • Yi Deng
  • Charles L. Asbury
  • Bertil Hille
  • Duk-Su Koh
چکیده

Activated Gq protein-coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein-tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein-coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary depletion of PIP2. Indeed, artificial recruitment of PIP5K removed the secondary loss of PIP2 completely. Altogether, our experimental and theoretical approaches demonstrate roles and dynamics of the protein kinases, β-arrestin, and PIP5K in the desensitization of PAR2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-Arrestin mediates oxytocin receptor signaling, which regulates uterine contractility and cellular migration.

Desensitization of the oxytocin receptor (OXTR) in the setting of prolonged oxytocin exposure may lead to dysfunctional labor, which increases the risk for cesarean delivery, and uterine atony, which may result in postpartum hemorrhage. The molecular mechanism for OXTR desensitization is through the agonist-mediated recruitment of the multifunctional protein β-arrestin. In addition to its desen...

متن کامل

Intestinal mucosal injury induced by tryptase-activated protease-activated receptor 2 requires β-arrestin-2 in vitro.

Tryptase exacerbates intestinal ischemia-reperfusion injury, however, the direct role of tryptase in intestinal mucosal injury and the underlying mechanism remains largely unknown. Protease-activated receptor 2 (PAR‑2), commonly activated by tryptase, interacts with various adaptor proteins, including β‑arrestin‑2. The present study aimed to determine whether tryptase is capable of inducing int...

متن کامل

Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors.

G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensi...

متن کامل

β-Arrestin and dishevelled coordinate biased signaling.

T he adaptor proteins β-arrestins 1 and 2 are ubiquitously expressed and were originally discovered for desensitizing G proteinmediated signal transduction by the cellsurface seven-transmembrane receptors (7TMRs or GPCRs) (1). 7TMRs constitute the largest family of cell-surface receptors, and their signaling regulates almost every aspect of mammalian physiology, including vision, olfaction, beh...

متن کامل

β-Arrestin 2 negatively regulates Toll-like receptor 4 (TLR4)-triggered inflammatory signaling via targeting p38 MAPK and interleukin 10.

The control of IL-10 production in Toll-like receptor (TLR) signals remains to be elucidated. Here, we report that β-arrestin 2 positively regulates TLR-triggered IL-10 production in a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. In vitro studies with cells including peritoneal macrophages and HEK293/TLR4 cells have demonstrated that β-arrestin 2 forms complexes with p38 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2016